Nico Josulttis P2012R2: Fix the range-based for loop

P2012R2
Fix the Range-Based for Loop

Nico Josuttis
nico@josuttis.de

09/21

Basic Problems/Symptoms

for (auto e : getTmpColl()) Il OK

for (auto e : getTmpColl() .getRef()) /I runtime ERROR
for (char c : getVectorOfStrings () [0]) I/l runtime ERROR
for (auto e : getOptionalVector().value()) /I runtime ERROR
for (auto e : std::get<0>(getTuple())) /I runtime ERROR

for (auto e : std::span{getColl().data(), 5}) // runtime ERROR

or std: :views: :counted(...) - Core dump at best

» Some compilers detect this problem
but only for standard types

http://wg21.link/cwg900:
... the only place where binding a reference to a temporary
extends its lifetime implicitly, unseen by the user.

Nico Josulttis P2012R2: Fix the range-based for loop

Style Guides Warn About / Disable the Range-Based for Loop

* Embracing Modern C++ Safely
by Rostislav Khlebnikov and John Lakos
Revised March 29th, 2018
— "Conditionally Safe Features:"

+ "Finally, range-based for loops might hide issues with iterator invalidation
and reference lifetime extension, leading to undefined behavior"

* https://abseil.ioltips/107

/I Lifetime extension *doesn't work* here: sub_protos (a repeated field)

Il is destroyed by MyProto going out of scope, and the lifetime extension rules
I/l don't kick in here to magically lifetime extend the MyProto returned by

Il GetProto(). The sub-object lifetime extension only works for simple

Il is-a-member-of relationships: the compiler doesn't see that sub_protos()

Il itself returning a reference to an sub-object of the outer temporary.

for (const SubProto& p : GetProto().sub_protos()) { } //WRONG

* Draft MISRA C++ coding standards for safety-critical systems:
— "A for-range-initializer shall contain at most one function call"

History

* http://wg21.link/cwg900 and http://wg21.link/cwg1498
raised exactly this problem in 2009 and 2012
which then 2014 became http://wg21.link/ewg120

* EWG notes from Rapperswil 2014:

— EWG wants a solution, and welcomes a paper tackling the issue.
Vandevoorde raised concerns introducing any new lifetime models.
Stroustrup pointed out that the end-of-full-expression rule came
about to reduce memory footprint compared to the end-of-block
rule and is good for RAIl uses. Is it possible to solve the issue by
just modifying the specification of a range-for loop?

* CWG notes from the February, 2017 meeting:

— CWG felt were inclined to accept the suggested change but felt that
EWG involvement was necessary prior to such a decision.

* Proposed solution covers all concerns raised

4

Nico Josulttis P2012R2: Fix the range-based for loop

Status (from EWG 2021-01-28)

There is a problem to be solved with range-based for loops and lifetime of temporaries.

SF F N A SA
17 10 2 0 0O

A solution which might break existing code (such as the lock example Nico showed) is acceptable.

S F F N A SA
3 157 40

Against: | would prefer to avoid breaking code, especially since it's not a local effect and can't be
detected on compile time.

A solution which proposes a new kind of loop is worth exploring

S F F N A 5A
1 |6 10 8|23

Favor: | would like an additional syntax for “safe” for loop

Other Safe for Loop?

* This is a problem programmers have when using the range-based for loop as is.
* To avoid the problem:

— Programmers have to be aware of the problem

— Know that there is something better (easier/safer) to use
* We would have to

— Define yet another loop

— Teach 4 Millions programmers why it is better
* Note that we do not want to deprecate the existing loop

— But still have the problem

* Note: This is the loop to iterate over collections

* Could compilers detect broken code?

— Compilers could warn if the right hand side of the range-based for loop calls a function
returning a reference to a temporary object

— AND the destructor of the temporary object is not empty
— Similar to the way we detect lifetime extension problems right now

We do not expect many false positives.

Nico Josulttis P2012R2: Fix the range-based for loop

How much code is broken in practice?

Titus checked with a person at Google code base and they reported:

* We were able to cobble together a rough analysis: which destructors are invoked
on the right hand side of the ":" in a RBF. Running that over a random subset of
our codebase, we infer that there are perhaps 10K d'tors in that position.
Reducing those and grouping by the relevant types, we can find 0 instances of
types in that place that would be a problem. If there were instances that escaped
this analysis, we expect that it's on the order of <1 instance per 100MLoC.

* But we found something interesting by doing the research:
The current definition of the range-based for loop makes code already

unnecessary complex:

— Many (most?) of the d’tors we can find in that location are for utilities that were
written specifically to avoid the bug you’re proposing to address.

So, it seems the current problem of the range-based for loop causes significant
drawback in existing code.

* Which is to say, for comparison: every deprecation and removal and "nobody wiill
be hurt by this" change that WG21 has made in the past few years (std::random,
std::bind1st, changing converting constructor behavior for variant) is 10x+ harder
fo adopt than this change, as near as we can tell.

7

Proposed Wording for C++23 1/2

In 6.7.7 Temporary objects [class.temporary]

5 There are three four contexts in which temporaries are destroyed at a
different point than the end of the full-expression.

7 The fourth context is when a temporary object is created in the for-range-initializer of
a range-based for statement. Such a temporary object persists until the completion of

the statement.

In [stmt.ranged] add before Example 1:

[Note: The lifetime of temporaries that would be destroyed at the end of the full-
expression of the /for-range-initializer/ is extended to cover the entire loop
(class.temporary).]

Add a new section in Annex C:

Thanks to Barry Revzin and Jens Maurer for this wording

Nico Josulttis P2012R2: Fix the range-based for loop

Proposed Wording for C++23 2/2

Add a new section in Annex C:

Affected subclause: 6.7.7 [class.temporary]

Change: The lifetime of all temporary objects in the for-range-initializer persists until
the end of the loop.

Rationale: Because when the range-base-initializer is an expression that yields a reference to a
temporary object created there, the loop iterates over destroyed elements.

Effect on original feature: Valid C++ 2020 code may have different semantics in this revision of C++.
[Example1:

std::mutex m;

std::vector<int> v;

...

for (auto e: (std::scoped lock{m}, v)) {

/I m is held across the entire loop; previously m was released before executing the loop body
...
}
-- end example]

Thanks to Barry Revzin and Jens Maurer for this wording

